Alexander et al CatSper channels S129

CatSper channels

Overview: CatSper channels (CatSpers1–4; nomenclature as agreed by NC-IUPHAR, Clapham and Garbers, 2005) are putative 6TM, voltage-gated, calcium-permeant channels that are presumed to assemble as a tetramer of α -like subunits and mediate the current I_{CatSper}. In mammals, CatSper subunits are structurally most closely related to individual domains of voltage-activated calcium channels (Ca_v) (Ren *et al.*, 2001). CatSper1 (Ren *et al.*, 2001), CatSper2 (Quill *et al.*, 2001) and CatSpers3 and 4 (Lobley *et al.*, 2003; Lin *et al.*, 2005; Qi *et al.*, 2007), in common with a recently identified putative 2TM-auxiliary CatSper β protein (Liu *et al.*, 2007) and a putative 1TM-associated CatSper γ protein (Wang *et al.*, 2009), are restricted to the testis and localized to the principle piece of sperm tail.

Nomenclature	CatSper1	CatSper2	CatSper3	CatSper4
Ensembl ID	ENSG00000175294	ENSG00000166762	ENSG00000152705	ENSG00000188782
Activators	Constitutively active, weakly facilitated by membrane depolarization, strongly augmented by intracellular alkalinization	-	-	_
Blockers	Cd ^{$^{2+}$} (200 μM), Ni ^{$^{2+}$} (300 μM), ruthenium red (10 μM)	-	_	_
Functional characteristics	Calcium-selective ion channel ($Ba^{2+} > Ca^{2+} > Mg^{2+} > Na^+$); quasilinear monovalent cation current in the absence of extracellular divalent cations; alkalinization shifts the voltage dependence of activation towards negative potentials ($V_{\frac{1}{2}}$ at pH 6.0 = +87 mV; $V_{\frac{1}{2}}$ at pH 7.5 = +11 mV)	Required for I _{CatSper}	Required for I _{CatSper}	Required for I _{CatSper}

CatSper channel subunits expressed singly, or in combination, fail to functionally express in heterologous expression systems (Quill *et al.*, 2001; Ren *et al.*, 2001). The properties of CatSper1 tabulated above are derived from whole cell voltage-clamp recordings comparing currents endogenous with spermatozoa isolated from the *corpus epididymis* of wild-type and *Catsper1*^(-/-) mice (Kirichok *et al.*, 2006). I_{CatSper} is also undetectable in the spermatozoa of *Catsper2*^(-/-), *Catsper3*^(-/-) or *Catsper4*^(-/-) mice, and CatSper 1 associates with CatSpers2, 3 or 4 in heterologous expression systems (Qi *et al.*, 2007). Moreover, targeted disruption of *Catspers1*, 2, 3 or 4 genes results in an identical phenotype in which spermatozoa fail to exhibit the hyperactive movement (whip-like flagellar beats) necessary for penetration of the egg *cumulus* and *zona pellucida* and subsequent fertilization. Such disruptions are associated with a deficit in alkalinization- and depolarization-evoked Ca²⁺ entry into spermatozoa (Carlson *et al.*, 2003; 2005; Qi *et al.*, 2007). Thus, it is likely that the CatSper pore is formed by a heterotetramer of CatSpers1–4 (Qi *et al.*, 2007). CatSper channels are required for the increase in intracellular Ca²⁺ concentration in sperm evoked by egg *zona pellucida* glycoproteins (Xia and Ren, 2009). The driving force for Ca²⁺ entry is principally determined by a mildly outwardly rectifying K⁺ channel (KSper) that, like CatSpers, is activated by intracellular alkalinization (Navarro *et al.*, 2007). KSper is not yet identified, but its properties are most consistent with mSlo3, a protein detected only in testis (Navarro *et al.*, 2007).

Further Reading

Clapham DE, Garbers DL (2005). International Union of Pharmacology. L. Nomenclature and structure-function relationships of CatSper and two-pore channels. *Pharmacol Rev* 57: 451–454.

Navarro B, Kirichok Y, Chung JJ, Clapham DE (2008). Ion channels that control fertility in mammalian spermatozoa. *Int J Dev Biol* **52**: 607–613. Publicover SJ, Giojalas LC, Teves ME, de Oliveira GS, Garcia AA, Barratt CL *et al.* (2008). Ca²⁺ signalling in the control of motility and guidance in mammalian sperm. *Front Biosci* **13**: 5623–5637.

Quill TA, Wang D, Garbers DL (2006). Insights into sperm cell motility through sNHE and the CatSpers. *Mol Cell Endocrinol* **250**: 84–92. Suarez SS (2008). Control of hyperactivation in sperm. *Hum Reprod* Update **14**: 647–657.

Zhang D, Gopalakrishnan M (2005). Sperm ion channels: molecular targets for the next generation of contraceptive medicines? *J Androl* 26: 643–653.

References

Carlson AE et al. (2003). Proc Natl Acad Sci USA 100: 14864–14868. Carlson AE et al. (2005). J Biol Chem 280: 32238–32244. Kirichok Y et al. (2006) Nature 439: 737–740. Lin J-L et al. (2005). Biol Reprod 73: 1235–1242. Liu J et al. (2007). J Biol Chem 282: 18945–18952. Lobley A et al. (2003). Reprod Biol Endocrinol 1: 53.

Navarro B et al. (2007). Proc Natl Acad Sci USA 104: 7688–7692. Qi H et al. (2007). Proc Natl Acad Sci USA 104: 1219–1223. Quill TA et al. (2001). Proc Natl Acad Sci USA 98: 12527–12531. Ren D et al. (2001). Nature 413: 603–609. Wang H et al. (2009). Biol Reprod 2009 81: 539–544. Xia J, Ren D (2009). Biol Reprod 80: 1092–1098.